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Abstract 

A general form for the intensity distribution of ther- 
mal diffuse scattering (TDS) is derived within the 
framework of quantum mechanics. The formulation 
takes into account the dynamical diffraction effects 
for both the initial and the final states of high-energy 
electrons and uses a single incoherent scattering 
approximation. When applied to estimate the 
intensity distribution of TDS in reflection high-energy 
electron diffraction (RHEED), using a two-wave 
approximation for the elastically scattered wave field, 
an analytical expression is obtained. It is shown that 
the dynamical diffraction effects may lead to an 
enhancement in the TDS intensities near the diffrac- 
tion spots. The influence of correlated thermal atomic 
displacements on the contrast of the Kikuchi line 
parallel to the surface shadow edge has been 
discussed. 

1. Introduction 

It is now well established that inelastically scattered 
electrons contribute considerably to the image forma- 
tion of reflection electron microscopy (Yagi, 1987; 
Peng & Cowley, 1989). The analysis of the angular 
and energy spectra of electrons scattered at grazing 
incidence from a crystal surface shows that the 
observed distribution results from inelastic collisions 
accompanied by phonon, plasmon and single-elec- 
tron excitations of the target (Howie, 1983; Wang, 
1988). In particular, Holloway & Beeby (1978), 
Agrawal (1984) and Peng & Cowley (1988, 1989) have 
shown that it is the thermal diffuse scattering that 
gives the appearance of the intensity peaks in reflec- 
tion high-energy electron diffraction (RHEED) pat- 
terns in directions which prove to be forbidden by 
the energy and momentum conservation laws for pure 
elastic scattering. To analyze the intensity distribution 
in the thermal diffuse scattering (TDS) peaks, Hollo- 
way & Beeby (1978), Agrawal (1984), Albrecht & 
Meyer-Ehmsen (1988) and Korte & Meyer-Ehmsen 
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(1990) used a kinematical theory and assumed that 
the states of electrons before and after the inelastic 
scattering are planar waves. 

In the case of transmission high-energy electron 
diffraction (THEED), Rez, Humphreys & Whelan 
(1977) have shown that the kinematical approach to 
TDS can be used only when the effects of dynamical 
diffraction by the time-averaged crystal potential is 
negligible. The calculations of Maksym & Beeby 
(1981), Ichimiya (1983) and Peng & Cowley (1986) 
indicate that the criteria for the validity of the kine- 
matical approximation in RHEED are not satisfied, 
and the diffraction by a periodical potential changes 
greatly the wave function of a high-energy electron 
inside the crystal in comparison with the incident 
planar wave. 

The mutual influence of dynamical diffraction and 
inelastic scattering of high-energy electrons in the 
crystal is also of interest in the problem of Kikuchi- 
pattern intensity distribution analysis (Miyake, Hay- 
akawa, Kawamura & Ohtsuki, 1975; Kawamura, 
Ichikawa & Goldstaub, 1973). It is worth mentioning 
that the theory of Kikuchi patterns (Kainuma, 1955; 
Chukhovskii, Alexanjan & Pinsker, 1973; Rossouw 
& Bursill, 1986; Bird & Wright, 1989) is based usually 
on the account of the diffraction of inelastically scat- 
tered electrons. In the RHEED case, however, the 
TDS intensity peaks are located in the vicinity of 
diffraction spots and the effects of elastic collisions 
are to be taken into account both before and after 
the inelastic scattering. 

In this paper we give a general formulation for the 
TDS intensity distribution, treating the inelastic col- 
lision kinematically and the diffraction of electrons 
before and after the collision dynamically. An analyti- 
cal expression for the angular distribution of TDS 
intensity is obtained using a two-wave approximation 
which permits a simple analytical representation of 
the dynamical diffraction processes. It is shown that 
the dynamical effects may lead to a considerable 
increase of TDS intensity in the vicinity of diffraction 

0 1991 International Union of Crystallography 



S. L. DUDAREV, L.-M. PENG AND M. I. RYAZANOV 171 

spots compared with the predictions of a kinematical 
TDS theory. The influence of the correlation of the 
thermal atomic displacements is shown to decrease 
with the increase of the scattering angle, and con- 
sequently the contrast of a horizontal Kikuchi line 
reverses from the center to the edge as observed 
experimentally by Miyake et al. (1975). 

2. Single incoherent scattering approximation 

As known, at the collisions with phonons a high- 
energy electron loses only a small portion of its energy 
AE -- kBT <. 0-025 eV, and the thermal scattering may 
be considered as quasielastic. This means that, in 
calculating the TDS intensity, a time averaging over 
the thermal motion gives the same results as a simple 
configuration averaging used in the statistical theory 
of X-ray diffraction (see, for example, Holy & 
Gabrielyan, 1987). To determine the TDS intensity 
distribution we consider the averaged direct product 
of the wave functions of the scattering problem (i.e. 
the density matrix) 

p(r, r') = (0(r)  0*(r')). (1) 

Let us separate from the crystal potential U(r) the 
perturbation potential describing the atomic thermal 
oscillations 

8U(r) = U ( r ) - ( U ( r ) )  (2) 

and write the solution of the scattering problem in 
an integral form: 

~(r)=~(r,  po)+~d3RG(r,R)SU(R)~(R),  (3) 

where the function ~(r, Po) represents the solution to 
the elastic scattering problem in the effective non- 
Hermitian potential (Dudarev, 1988; Gorodnichev, 
Dudarev, Rogozkin & Ryazanov, 1989) (h = 1) 

1 a 2 
2m ar 2 ~(r, Po)+ V(r)~(r,  Po) 

= (p2/2m)~(r ,  Po). (4) 

The potential V(r) is a sum of two terms: a Hermitian 
one which describes the usual elastic electron scatter- 
ing and a non-Hermitian one which corresponds to 
the effective particle absorption due to the inelastic 
transitions (Whelan, 1965; Radi, 1970; Dudarev & 
Ryazanov, 1988). 

For a planar wave exp (ipor) incident on a crystal 
from infinity, the boundary condition for (4) is of the 
form 

t~inc(r) = exp (ipor). (5) 

The Green function G( r ,R)  appearing in (3) 
describes the field due to a point source 

2m 2m Or 2 V(r) G(r, R) = ~ ( r - R ) .  (6) 

It should be noted that the formulation suggested 
above differs from the previous ones (Gj~nnes, 1972; 
Kambe, 1967; Serneels, Haentjens & Gevers, 1980) 
in the form of the Green function (6). In our case 
the function is so chosen to include the dynamical 
diffraction effects by the effective periodical potential 
of the crystal V(r) [for detailed treatment see 
Gomoyunova,  Dudarev & Pronin (1990)]. 

The averaging of a bilinear combination of the 
wave functions (1) is easier to perform by expansion 
into a series in powers of the potential 8U(r).  By 
virtue of the relation 

(SU(r)) = 0, (7) 

we have 

p(r, r') = 0(r, po)0*(r', Po) 

+ J d a R  d3R ' G(r, R)G*(r ' ,  R') 

x (SU(R)SU(R'))  

× , ( a ,  p o ) * * ( R ' ,  po) + . . . .  (8) 

The series (8) has a simple physical meaning. The 
first term of this series describes elastic scattering, the 
second term corresponds to a single incoherent scat- 
tering, and p(r, r') is the density matrix of a fast 
electron with the energy close to its initial energy 
IE -p2/2ml <- k~T. It is worth mentioning that (8) can 
also be obtained by expanding the stationary kinetic- 
equation solution into a series of integral of inelastic 
collisions (Dudarev, 1988; Gomoyunova et al. 1990). 

The angular and energy distributions of particles 
are described in quantum mechanics by the diagonal 
elements of the density matrix in its momentum rep- 
resentation (Blum, 1981) 

p(p,p')=~d3rd3r' exp(-ipr+ip'r ')p(r,r ') .  (9) 

Calculation of these elements generally requires the 
integration of (1) over all three spatial coordinates. 
However, in cases where all the electrons emerging 
from the crystal have nearly the same energy E 
p2/2m, the angular distribution can be determined if 
we know the distribution of particles between the 
components of the momentum parallel to the surface 
Pll = (px, Pr) in the limit z ~ - c ~ ,  where the direction 
of axis z coincides with the inner normal to a crystal 
surface. 

P(PlI, z; Oil, z) 

=Jd2rl4d2rilexp[iPll(rlt-rtl)]p(rtt,z;ril,Z). (10) 

It is common practice in RHEED to characterize the 
momentum direction of a particle emerging from the 
crystal by two angles 01 and ~ using a spherical 
system of coordinates. In this case the diagonal 
elements (10) are related to the angular distribu- 
tion of electrons scattered in a half-space z < 0  
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(Gorodnichev, Dudarev, Rogozkin & Ryazanov, 
1987) 

Icos o,lp(p,; -oo; PlI; mOO)[dEpll/(2rr)2- y ] 

= I(0,; Ct) d(cos Or) d e t ,  

where 

PU = (Po sin 01 cos (p~; Po sin 0~ sin ~ ) ;  cos 0~ < 0  

and ~ is a crystal surface area. Taking into account 
the relation 

d2pll = pglcos 0,1 dtp~ d(Icos 0,l), (11) 
we obtain 

I(0,; ~0,) = (po cos OJ27r) 2 

x E- 'p(Pll;  -oo; PlI; -oo). (12) 

To calculate the angular distribution of the scattered 
electrons, using (8) and (12) one needs to evaluate 
the Fourier component of the Green function (6) 
between the coordinates parallel to the surface 

gp,l(--oo; R) = ~ d2rll G(rll , -oo; R) exp (-iPllrll). (13) 

Taking into account the reciprocity theorem (Pogany 
& Turner, 1968), 

G(r, R) = G(R, r), (14) 

and using (13), we obtain to an accuracy of a phase 
factor (Gorodnichev et al., 1989) 

g, ,(-oo; R ) = - ( i m / p o l c o s  0~I)~(R,-P0.  (15) 

It is interesting to note that the function qJ(R,-p~) 
corresponds to the known 'reciprocal wave' used by 
Kainuma (1955) in his theory of Kikuchi patterns. A 
substitution of (15) into (12) and application of the 
expression (8) then allows us to obtain the following 
expression for the angular distribution of TDS 

I(0,; ~o,)= ~- ' (m/2cr)2 ~ d3R d3R ' 

x ¢(R, - p , ) ~ * ( R ' ,  - p , )  

x (SU (R)BU (R'))~(R, po) ~* (R', Po). 

(16) 

Equation (16) shows that, in order to find the intensity 
of TDS in a direction Pl, it is necessary to calculate 
the double integral of the product of the potential 
correlator (2) times the four solutions of the dynami- 
cal diffraction problem. It should be noted that a 
formula which is similar to (16) was obtained by 
Dmitrienko & Kaganer (1987) in the statistical 
dynamical theory of X-rays. 

If we neglect the dynamical diffraction effects, (16) 
then reduces to the known kinematical formula 
(Holloway & Beeby, 1978; Agrawal, 1984). In what 
follows, we will give a solution for the elastic scatter- 
ing problem (4) using a two-wave approximation. 
The two-wave solution then allows us to calculate the 
integral (16) in an explicit analytical form. A gen- 

eralization of the corresponding formulae to the 
many-beam case can be obtained by using one of the 
numerical methods as developed, for example, by 
Collela (1972), Moon (1972) and Ma & Marks (1989). 

3. The wave function of the elastic scattering problem 

To solve the problem (4), (5), let us consider the case 
of the two-wave Bragg diffraction when the potential 
V(r) in the region z > 0 may be presented in the form 

V(r )=  Vo+ V~exp( iGz)+ V_~exp( - iGz) ,  (17) 

where in the general case V* # V_~. Outside the 
crystal z < 0 the potential V(r) is equal to zero. It is 
known that the two-wave approximation can be used 
in cases when 

G=/2mlV, I~ I. (18) 

If the condition (18) is satisfied the wave function 
~,(r, P0) may then be represented in the form ~,(r, Po) = 
exp [i(po)llrll)~o(z), where 

[ a e x p ( i K z ) + / 3 e x p [ i ( K - G ) z ]  a t z > 0  

~ ( z ) = [ e x p ( i k o z ) + R e x p ( - i k o z )  at z < 0 ,  

(19) 

where ko = (Po)~ = Po cos 0o, and the quasimomentum 
r is a solution of the equation 

( K22~ 2m k°2+ V°) [  ( r -  G)22m 2m k2°~ V o ] - V , V _ , = O .  

(20) 

A physically allowed root of (20) is selected by the 
conditions that Im K > 0  and lim K=ko at Vo, 
V~, V_~ = 0. Applying these conditions, we find 

K = (G/2)  + {ko 2 + ( G 2 / 4 ) -  2m Vo[ G2(ko 2 - 2m Vo) 

+4m2V, V_,]'/2} '/2, (21) 

where a complex square root is determined by the 
rule z"2--lz]'/2exp(iS/2)where z=lzlexp(iS); 
0 -< 8 < 2w. Using the conditions of continuity for ~o(z) 
and ¢'(z) at z = 0 ,  one can find the numerical 
coefficients in (19): 

ko-  K + D ( ko-  K + G ) 
R -  

ko+ K + D(lq)+ K + G)" 

2ko 
m , , a k o + K + D ( k o + K +  G) fl = De (22) 

2mV_~ 
D =  

k2o- ( K - G)2 - 2m Vo" 

At k~/2m~lVo[, (22) give a - - 1  and f l " - D ' - - R  and 
this property is very important for our further analy- 
sis. In the case of zero absorption and in the region 
of values 

[ (G2/4) + 2m Vo - 2ml V~l] ~/2 <- ko 

<-[(G2/4)+ 2mVo+ 2mlV,[] ~/2, (23) 
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the real part of the quasimomentum Re K is constant 
and equals Re K = G/2, giving JR[ = 1. An imaginary 
part of the quasimomentum reaches its maximum of 
Im K = 2m I V~[/G at the point 

ko=[(G2/4)+2mVo-(2m VI/G)2] '/2. (24) 

At this point the wave function penetrates into the 
crystal by the minimal depth 

1 - ( 2  Im K) -~= G/amlVll. (25) 

The penetration depth (25) is many times the lattice 
constant along the z direction. This circumstance 
allows us to limit ourselves to the case of bulk phonon 
scattering only. 

4. Structure factor of phonon scattering 

To calculate the correlator of the potential fluctua- 
tions in formula (8) we represent 8U(R) in the form 
of a sum of the potentials of separate atoms 

8 U ( R )  = Y~ ~Uo(R) 
a 

=X Ua(R-R,~-u,~)-(U,~(R-R,,-ua)) 
a 

=~ d3q/(2~')3 ~ Ua(q) exp[iq(R-R,,)] 
a 

x [exp ( -  iqua) - (exp (- iqun))] .  (26) 

Neglecting the anharmonicity of the thermal motion, 
one can perform averaging of the product of (26) 
over atomic displacements, following the method as 
developed by Afanas'ev & Kagan (1968). 

(SU(R)SU(R'))  = j" [d 3 q d3k/(2~r) 6] 

x ~" Ua(q)Ub(-k) 
q,b 

x exp [ i q ( R -  Ro) - i k ( R ' -  Rb)] 

x exp [ -  ½((qua)2)- ½((kub)2)] 

x {exp [((qua)(kub))]-  1}, (27) 

where Ua(q)=-(4"n'e2/q2)[Za-fa(q)] is a Fourier 
component of the atomic potential. Following 
Afanas'ev & Kagan, we divide a summation over the 
coordinates of atoms Ra in (27) into a summation 
over centers of unit cells R. and a summation over 
atoms within a cell j, Ra = R. + rj. Then, for values 
included in (27) we may write 

((qua)(kUb)) = Yi/,(q, k, R . -  a.,) (28) 

where 

Y~,(q, k, R . -  P-~,) 

if(f, a)+½ 
= ao/(2¢r)3 f d3f~w~,(f)(MjM~,)l/2 

x [qej(f, c~)][keT(f , a ) ]  exp [ i f ( R . -  R°,)]. (29) 

In (29), Oo is the volume of a unit cell, Mj is the 
mass of the j th  atom, the summation over f and a is 
carded out over the wave vectors and the branches 
of the phonon spectrum of the crystal with the 
frequencies to~(f) and polarization vectors ej(f, a ) ,  
and for equilibrium 

~(f, a ) =  {exp [co~ ( f ) / k B T ] -  1} -!. 

At j = j '  and R . =  R~,, (29) coincides with the usual 
Debye-Waller  factor 

Yjj(q, q, 0) = W~(q) = ((quj)2). (30) 

In the limiting case IR . -R° , I~ ,~o  1/3 the acoustic 
branches of the phonon spectrum give the main con- 
tribution to the sum (29) and in the cubic (b.c.c. or 
f.c.c.) lattice one can obtain 

y0,(q, k, R ._R. , )  - kBT ,Oo (qk) 
Mc 2 47r IR.-R.,I' (31) 

where M = ~j Mj and c is the velocity of sound. We 
have already mentioned that the calculation of diffuse 
intensity (16) reduces to the integration of the poten- 
tial fluctuations correlator (27) over all values of R 
and R' inside the crystal. It is seen that the result of 
the integration may be represented in the form of a 
linear combination of integrals of (SU(R)SU(R'))  
times the four exponents decreasing at infinity 

~b(R) = e x p  ( i Q R - w R ) ,  (32) 

where the vector W lies along the z axis, Ix = ~ < G. 
Let us introduce the notation 

(m/2zr)2X -1 ~ d3R d3R ' exp ( i K I R -  iK2R') 

x exp [ - ( t to  + t t l)(R + R')](6 U(R) 6 U(R')) 

= [2(p~o + [./,1) ]--1 S(KI; K2). (33) 

According to (19) and (16), to estimate the diffuse 
background we must calculate the integral (33) at 
K t - K 2 - - G '  where G' is a reciprocal-lattice vector. 
Since the general expression for S (K+GI ;  K+G2) 
corresponding to an arbitrary lattice symmetry proves 
to be very cumbersome, we limit ourselves to the 
calculation of this factor in the case of a monoatomic 
cubic lattice, one atom of which is located at the 
origin. To realize this we separate all terms corre- 
sponding to n = n' and j = j '  from the sum over a = 
(n, j )  and b = (if, f ) .  Summing over R=, we obtain 

S(K + G1, K+ G2) = S~(K + G1, K + G2) 

+ S o ( K + G , , K + G 2 )  (34) 

SE(K+ G1; K+G2) 

= n(m/2~)2U(-K-GI)U(K +G2) 

x {exp [-½ W ( G 2 -  G1)] 

- exp [-½ W(K+ G I ) - ½ W ( K +  G2)]}, (35) 

where n is the number of atoms per unit volume. It 
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should be noted that (35) coincides with the phonon 
structure factor calculated within the Einstein model 
of thermal motion by Hall & Hirsch (1965) and 
Whelan (1965). The second term in (34) results from 
the scattering by correlated atomic displacements. 
Afanas'ev & Kagan (1968) have shown that the first 
term of the expansion of (27) in powers of the 
Y~,(q, k, R.-R=,) function gives the main contribu- 
tion to the second summand. Using the Debye model 
(31) we obtain a simple expression for the second 
term in (34) 

So(K+ G~; K+G2) 

= n v U ( - K - G I )  U ( K +  G2) 

x ( k a T / M c  2) exp [ -  1W(K + G1) ] 

x exp [-½ W(K + G2)](K +G1, K +G2) 

x y. [(IK, + G,I + mo +/'L1) 
G 

x {IK, + G,I [ (Kz + G,) ~ 

+ (IKll + GIll + ~o+ jL1,,1)2]}-1] , (36) 

where v is the number of atoms in a unit cell. In this 
case only one summand closest to the pole IK+G] -~ 
in the sum over G in (36) should always be preserved. 

It is interesting to note that a similar expression to 
(36) has been obtained by Afanas'ev, Kagan & Chuk- 
hovskii (1968) in the dynamical theory of X-ray 
diffraction. 

Finally, inserting (19) in (16) and taking into 
account the definitions (33) and (22) one obtains 

I(01; @1) = 2(/.LO+ ~I)] - '{S(K,  K) 

+ lRo+ RII2S(K+G, K+G)  

+IRoR,I~S(K+ 2G, K+ 2G) 

+ 2 Re (Ro+ R1)S(K, K +G)  

+ 2 Re (RoR,)S(K, K + 2G) 

+ 2 Re {IRol 2R1 + IRI] 2Ro} 

x S ( K + G ,  K+2G)},  (37) 

where the vector G lies opposite the z axis, (G), = - G ,  
KII = (Po-Pl)ll,  Kz = Re K0+ Re K1, /~1.o = Im K1, 0 and 
Ki denotes the quasimomentum (21) corresponding 
to the wave vector ki = polcos 0il; i =  0,1. 

Expression (37) gives the complete solution of the 
thermal diffuse background evaluation problem in 
RHEED under the conditions of two-wave Bragg 
diffraction for both the incident wave on a crystal 
and the inelastically scattered electrons. 

5. Analysis of intensity distribution 

As known, the diffuse background (37) possesses the 
highest intensity in the vicinity of the diffraction spots 

(Peng & Cowley, 1988, 1989), which, within the two- 
wave approximation, correspond to the directions 
K ~- - G .  In the vicinity of such points the main contri- 
bution is due to the second term of the structure factor 
(34) and 

l ( 0 1 ; ~ l ) ~ 2 ( l t L O + ~ t t l )  ~ U ( C )  

kBT 
x Mc---5 exp [ -  W(G)]G2I 1 - gog,I  2 

KIll + P,o+ P,I 

IK,I[ ( Kz - t::;)~ + (1~:, I + . o  + . t  )~1" 
(38) 

From (38) we can see that a 'kinematical '  divergence 
of the intensity in the vicinity of a mirror reflection 
l---IKlll found by Holloway & Beeby (1978) and 
Agrawal (1984) is preserved in the dynamical theory. 
However, the total intensity integrated over 01 and 
~Ol turns out to be essentially greater in dynamical 
theory than that in the kinematical case. This effect 
arises from the constant difference Kz - G within the 
region of ' total '  Bragg reflection (23). Indeed, if the 
inequalities (23) are satisfied and the absorption is 
weak, i.e. Re Ko-~ G / 2  and Re K 1 ~ G/2,  then one can 
obtain [Kz-  G[-* 0. This means the diffuse intensity 
around the Bragg reflection reduces insignificantly 
even at relatively high angular deviations IKII]-~/Xo,/-*1 
of the momentum Pl from the mirror direction (see 
Fig. 1). It is interesting to note that in the Laue case 
discussed by Takagi (1958) and Afanas'ev & Kagan 
(1968) the diffuse intensity remains finite even in the 
vicinity of the diffraction spots. However, the diver- 
gence of the above-obtained type exists in the Bragg 
geometry as was shown by Afanas'ev, Kagan & 
Chukhovskii (1968) for X-rays. 

The effect of background increase on the opposite 
(with respect to the position of elastic reflection) side 
of the total reflection region is an interesting 
peculiarity of diffuse scattering in Bragg geometry 
(Figs. 1 and 2). 

c 

" 0 .  ?C' 

0 . 0 0  ,~--, 
C.  0 0  

t i 

/ '. 

i-- r- . 

2 ' . 4 C '  " ' ~. ' . . ' C  

Fig. 1. Thermal diffuse scattering intensity versus the normal 
momentum component of emerging electrons kl/G. Momen- 
tum Pt is located in the plane of incidence. Values of Fourier 
components of potential (17) 2mVo/G2=-O.045-iO.O09; 
2m V~/G 2 = -0.045 - i0.003. Normal component of the incident 
electron momentum ko/G is equal to 0.42; Po/G = 20. 
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In (38), the factor 11- RoR~[ 2 promotes this effect. 
Actually, the real part of the reflection coefficient R 
has different signs on different sides of the Bragg 
reflection region (23). It results in the fact that a 
maximum of the coefficient I1 - RoRI[ at Ro = 1 corre- 
sponds to the value R~ = - 1  and vice versa. It may 
lead to the appearance of an additional peak in the 
distribution of diffuse intensity similar to that shown 
in Fig. 2. The physical natu.e of this additional peak 
is connected with the predominance of the inter- 
branch phonon scattering over the intrabranch one 
in the vicinity of the diffraction spots (Takagi, 1958; 
Rez, Humphreys & Whelan, 1977). In fact, within the 
approximation (36) a correlator of potential fluctu- 
ations from (8), (16) may be written in the form 

( rU(R)~SU(R' ) )  = ~ ((u,, O/OR)(U,,(R-R,,-u,,)) 
a,b 

x (ub a~ oR')( ub (R ' -  R~ -u~))). 
(39) 

In the vicinity of atomic equilibrium positions, (39) 
is an odd function of its arguments R - Ra and R' - Rb. 
As a result, the phonon transitions among Bloch states 
of opposite parity contribute most of all to the diffuse 
intensity in the vicinity of the diffraction maxima. 
These states correspond to vacuum wave vectors ko 
and k~ lying on different sides of the Bragg reflection 
region (23) [for a detailed discussion of symmetry 
properties of Bloch-wave functions in the Bragg case 
see the review by Koval 'chuk & Kohn (1986)]. It is 
important to stress that the occurrence of the second 
diffuse maximum in the diffraction pattern had been 
mentioned by Takagi (1958) but he discussed the 
effect only qualitatively. 

In the region of relatively high angles of deviation 
from the mirror direction, the first term of the struc- 
ture factor (35) contributes most to the intensity. In 
this case, (37) describes the intensity distribution in 
the Kikuchi line parallel to the surface shadow edge 
(a horizontal Kikuchi line). It should then be noted 
that (37) contains an important factor (/Zo+/Z,) -1 
missed by Kawamura et aL (1973) and Miyake et al. 
(1975). A factor of this type is well known in all 
problems of radiative transfer in half-space targets 
(Chandrasekhar,  1960; Case & Zweifel, 1967; 

q 

I 

i 

z I i 

- '  i 

c ~ ' " .  
q -  . ;  : . ; 
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Fig. 2. Thermal diffuse scattering intensity in the plane of  incidence 
for ko/G =0.51.  Other parameters are the same as for Fig. 1. 

Dudarev, 1988; Gorodnichev et al., 1989). In par- 
ticular, in (37) this factor takes account of a change 
of the effective number of scattering atoms at varying 
diffraction conditions for incident or emerging elec- 
trons. The factor (~o + p.l) -~ reaches its minimal value 
at the center of a Bragg reflection region. It is evidently 
linked with a sharp reduction of the electron penetra- 
tion dep th  into a crystal in this case. 

Fig. 3 illustrates the intensity profile of a Kikuchi 
line calculated in accordance with (37) where the 
structure factor S(K,; K2) is defined by (35). The angle 
between the plane of incidence and the plane of 
emergence is equal to arcsin ( 2 G / p o s i n  00)=5.5 °. 
The curve given is in good agreement with the experi- 
mental data of Miyake et al. (1975). Notice that the 
transition to large scattering angles is accompanied 
by the appearance of a typical minimum in the profile 
of the Kikuchi line [see, for example, Fig. 4 of Miyake 
et al. (1975)]. Miyake et al. (1975) explained the effect 
on the basis of the theoretical approach developed 
by Okamoto, Ichinokawa & Ohtsuki (1971). They 
showed that the use of the Einstein model allows one 
to calculate the intensity profiles similar to those 
observed experimentally. However, the contribution 
of the Debye term (36) is predominant in the area of 
small angles of scattering. This point should 
apparently always be taken into account in quantita- 
tive interpretation of the intensity distribution. In 
particular, the observed effect of line contrast vari- 
ation with an increasing scattering angle (i.e. with a 
transfer from Fig. 1 to Fig. 3) may also be caused by 
a change of the form of the phonon structure factor 
from (36) to (35). 

6. Concluding remarks 

In this paper we have evaluated the thermal diffuse 
scattering background in RHEED within the 
framework of the two-wave approximation of 
dynamical diffraction theory. An enhancement in the 
diffuse intensity is found near the region of 'total '  
Bragg reflection, and the contrast of a horizontal 
Kikuchi line corresponding to the experimental con- 
ditions of Miyake et al. (1975) is calculated. 

" i?.£~. - 

• - ,  q., 
, .  

- 
. /  

/ 

~. 2'C . . . .  T - - ~  - - ~  . . . . . . . .  r--T . . . . . . .  ~ . . . . .  
. . , ~  • : . - .  ^ ~  

. .  . . .  

Fig. 3. Kikuchi line intensity profile, k o / G = 0 - 3 8 .  The angle 
between the plane of  incidence and the plane of  emergence is 
equal to arcsin (2G/po sin 0o) == 5"5 °. 
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To solve the problem of TDS in RHEED we have 
derived a general form for the intensity distribution 
of diffuse scattering, using a single incoherent scatter- 
ing approximation. Dynamical elastic diffraction 
effects have been taken into account for both in the 
initial and final fast electron states. From the analysis 
of (8) one should note that the high-energy electron 
diffuse scattering pattern may be more complex than 
distribution (37). Firstly, an intensity pattern 
observed in the experiments of Peng & Cowley (1988, 
1989) is formed under the many-beam diffraction 
conditions. The functions ~(r, p0) and ~,(r ,-pl)  
calculated using the many-beam theory methods may 
differ greatly in some cases from the corresponding 
two-wave solution (19). Secondly, statistics of the 
thermal motion near the surface (27) may not coincide 
with the statistics of thermal displacements in the 
bulk (Agrawal, Djafari-Rouhani & Dobrzynski, 
1979). Moreover, for a rough surface the incoherent 
intensity resulting from the diffuse scattering of point 
defects, dislocations and atomic steps may be con- 
siderable. We believe that the approach given above 
may be applied effectively to analyze the diffuse 
intensity in all mentioned cases while investigating 
the surface structure by reflection high-energy elec- 
tron diffraction. 
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